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Bloomberg investigation

Testing for name-based 
discrimination by submitting similar 
resumes with different names
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ChatGPT as a recruiter

https://www.bloomberg.com/news/features/2024-10-18/do-ai-detectors-work-students-face-false-cheating-accusations



ieter.ai Fairness in large language models —

Bloomberg investigation

3https://www.bloomberg.com/news/features/2024-10-18/do-ai-detectors-work-students-face-false-cheating-accusations

“Those with names distinct to Black women were top-ranked for a software engineering 
role only 11% of the time by GPT — 36% less frequently than the best-performing group.”

Testing for name-based 
discrimination by submitting similar 
resumes with different names

ChatGPT as a recruiter
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Postdoctoral research on fairness in LLMs

Currently part of KU Leuven’s DTAI research group. Previously at Apple. Soon at Aleph Alpha 🇩🇪 

Working on fairness issues in language models  

e.g. trying to remove gender biases 

First author of our RobBERT model

state-of-the-art Dutch BERT language model 

Expert advisor for the EU’s AI Act Code of Practice

and member of the KU Leuven GenAI board 
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Pieter Delobelle



Situating fairness
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Representational harms Allocational harms
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Biased representations
Reflecting or reinforcing social biases and stereotypes
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Bloomberg investigation

“AI-written” essays were often written by 
more vulnerable groups

• Non-native English speakers

• People with autism or similar disorders
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Detecting AI-written essays

https://www.bloomberg.com/news/features/2024-10-18/do-ai-detectors-work-students-face-false-cheating-accusations
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Bloomberg investigation

“AI-written” essays were often written by 
more vulnerable groups:

• Non-native English speakers

• People with autism or similar disorders


Recourse is difficult: real essay writers 
were not believed and met with suspicion

11

Detecting AI-written essays

https://www.bloomberg.com/news/features/2024-10-18/do-ai-detectors-work-students-face-false-cheating-accusations
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Biases are set in stone by automated decision-support systems
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Automated decision-making
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Recourse is difficult
Biases are set in stone by automated decision-support systems
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https://verhalen.trouw.nl/toeslagenaffaire/

https://journals.sagepub.com/doi/full/10.1177/13882627211031257 

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Automated decision-making
Dutch SyRI legislation 

and COMPAS in the USA
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Recourse is difficult
Biases are set in stone by automated decision support systems
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✨ Human-in-the-loop ✨ 
Polish public employment service

Automated decision-making
Dutch SyRI legislation 

and COMPAS in the USA
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Recourse is difficult
Biases are set in stone by automated decision-support systems

15Jędrzej, et al. "Profiling the unemployed in Poland: social and political implications of algorithmic decision making." (2015).

✨ Human-in-the-loop ✨ 
Polish public employment service

Automated decision-making

“All changes represented only 0.58% of 
all cases of profiling”

Dutch SyRI legislation 
and COMPAS in the USA
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Recourse is difficult
Biases are set in stone by automated decision-support systems

16Jędrzej, et al. "Profiling the unemployed in Poland: social and political implications of algorithmic decision making." (2015).

“Moreover, the justification required to change a 
profile is then recorded in the computer system 

and might be accessed by other people: 
management of a given [counselor], but also 

possibly the Ministry of Labor and Social Policy”

“All changes represented only 0.58% of 
all cases of profiling”

✨ Human-in-the-loop ✨ 
Polish public employment service

Automated decision-making
Dutch SyRI legislation 

and COMPAS in the USA



Model errors persist  
and reinforce social biases
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Representational harms Allocational harms
Part 1Part 2



Allocational harms
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Algorithms affect people
e.g. COMPAS

20Angwin et al. (2016)ieter.ai
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Algorithms affect people
e.g. COMPAS

ieter.ai
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There is always a tradeoff between false and true positives
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There is always a tradeoff between false and true positives
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A binary classifier is never perfect

False positive rate
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Social group A (often the minority)
Social group B

Separation: error rate parity

✨ randomization ✨
adding randomness increases fairness but adds ‘token’ individuals   
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Classifying Tweets about COVID in Belgium
Different languages have different performances

25https://huggingface.co/DTAI-KULeuven/mbert-corona-tweets-belgium-topics



Representational harms
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Tokenizing the training data
an example
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No, I am not a giraffe.
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an example
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No, I am not a giraffe.
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No, I am not a giraffe.

[2822, 11, 358, 1097, 539, 264, 41389, 38880, 13]
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Tokenizing the training data 
an example
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314: _I

37370: _gir
21223: affe

No, I am not a giraffe.

[2822, 11, 358, 1097, 539, 264, 41389, 38880, 13]
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Embeddings capture meaning
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Giraffe
0.9 0.10.10.50.4 0.10.0

Horse
0.8 0.10.20.50.4 0.20.0
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Similar embeddings are close
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Giraffe

Horse

Sweden

Norway

Queen

King
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Similar embeddings are close
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⏺  Horse
⏺  Giraffe

Giraffe

Horse

Sweden

Norway

Queen

King

⏺  Queen
⏺  King

⏺  Norway

⏺  Sweden

⏺  Denmark

⏺  Belgium
⏺  South Africa

⏺  Woman
⏺  Man
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in word embeddings
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in word embeddings
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Measuring bias
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→ WEAT (Caliskan, 2019) 
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LLMs use context to learn embeddings
to address polysemy
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Bank

🏦

LLMs use context to learn embeddings
to address polysemy
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Bank Bank

🏦 🌁

LLMs use context to learn embeddings
to address polysemy



Attention layers

robs aHe
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Attention layers

robs aHe

Bank

bank

Bank Bank

🏦 🌁

LLMs use context to learn embeddings
to address polysemy



Next token pred.

Attention layers

robs aHe

Bank

bank

Bank Bank

🏦 🌁

LLMs use context to learn embeddings
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Language modeling

1. Autoregressive language modeling 

44

2. Masked language modeling
is aHe

Masked LM

doctor

<m> aHe doctor

is aHe

Causal LM

doctor

is aHe

is aHe

Causal LM

isHe
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Language modeling

1. Autoregressive language modeling 

45

2. Masked language modeling
is aHe

Masked LM

doctor

<m> aHe doctor

is aHe

Causal LM

doctor

is aHe

is aHe

Causal LM

isHe

RobBERT

https://pieter.ai/robbert/
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Knowledge from resumes
Nationality varies between job titles

• Leverage MLM task to predict 
protected attributes


• This is a contextualized prediction 
given the resume


• “Cleaning ladies aren’t Belgians”

46

Kamermeisje Software-ingenieur

Congo

Bulgarije

Afghanistan

Syrië

Irak

Japan

Belgisch

Belgische

België

Belg

Non-calibrated posterior probability
0 0,2 0,4

Most probable nationalities

Delobelle et al. ‘ResumeTailor’ (2023)
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Measuring bias
in language models

47
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Pretraining and downstream tasks
Does reducing bias lead to fairer downstream tasks?

48Tokpo and Delobelle et al. (2023)
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Pretraining and downstream tasks
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Does reducing bias lead to fairer downstream tasks?

Tokpo and Delobelle et al. (2023)
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Most templates don’t correlate
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1.00 0.55 0.28 0.67 0.42 0.49 −0.33 0.51 −0.12 0.18 0.37

1.00 0.22 0.78 0.60 0.54 −0.11 0.44 0.46 0.14 0.42

1.00 0.13 −0.17 −0.07 −0.25 0.39 −0.02 0.29 0.16
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Delobelle and Tokpo et al. (2022)
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… and most metrics don’t correlate
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1.00

0.76 1.00

0.81 0.89 1.00

−0.38 −0.14 −0.49 1.00

0.50 0.94 0.78 0.03 1.00

−0.74 −0.53 −0.80 0.47 −0.35 1.00

0.10 0.53 0.23 0.72 0.68 −0.05 1.00

−0.39 −0.04 −0.47 0.68 0.12 0.83 0.41 1.00
−1.0

−0.5

0

0.5

1.0
SEAT

Lauscher et al. (2021)

Tan et al. (2019)

LPBS

CrowS-Pairs

BiasInBios

WinoBias (T1)

Skew

SEAT

Lauscher et al. (2
021)
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Skew

Correlations between intrinsic and extrinsic measures

Delobelle and Tokpo et al. (2022)
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Actionability of metrics

The actual metric does not matter much 
SEAT, CEAT, LPBS, DisCo, …


But it needs to test what you care about 
e.g. gender bias in professions


Make it explicit what you test


… and test if the metric is reliable 
e.g. if different runs yield different results

52

So what is a ‘good’ metric?



Safety and alignment
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Safety and alignment
Bias is not the only issue
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ieter.ai Fairness in large language models — 55https://www.bbc.com/travel/article/20240222-air-canada-chatbot-misinformation-what-travellers-should-know

Safety and alignment
Bias is not the only issue
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https://blog.character.ai/community-safety-updates/

Safety and alignment
Bias is not the only issue
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✨ Retrieval augmented generation ✨
Improving factuality with semantic search

57https://pieter.ai/blog/2023/dutch-chat-toolkit/
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… but not a silver bullet
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… but not a silver bullet

59https://storage.courtlistener.com/recap/gov.uscourts.nysd.575368/gov.uscourts.nysd.575368.32.1_1.pdf
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… but not a silver bullet

60https://storage.courtlistener.com/recap/gov.uscourts.nysd.575368/gov.uscourts.nysd.575368.32.1_1.pdf
Magesh et al. (2024). Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools

→ Hallucinations are inherent to LLMs
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Suppressing experts for toxicity
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AurA
Work done while at Apple

Suau and Delobelle et al. ‘Whispering Experts’ (2024)
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AurA
Work done while at Apple

Suau and Delobelle et al. ‘Whispering Experts’ (2024)
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Suppressing experts for toxicity
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AurA
Work done while at Apple

Suau and Delobelle et al. ‘Whispering Experts’ (2024)
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Suppressing experts for toxicity

→ Effectively mitigates toxicity


→ But no 100% guarantees

64

AurA
Work done while at Apple

Suau and Delobelle et al. ‘Whispering Experts’ (2024)



Fairness across languages
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Few non-English words are tokens

66

Token types for words in English do not match, so the tokenizer falls back to non-
representative tokens types.
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Few non-English words are tokens

67

e.g Dutch tokenizers: gpt-neo-1.3b-dutch

versus an English one: mistral-7b, geitje-7b

Token types for words in English do not match, so the tokenizer falls back to non-
representative tokens types.
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Trans-tokenization

68

Trans-Tokenization: embedding initializations
1. Token alignment

2. Embedding mapping

3. Model adaptation: continue pretraining for a few GPU hours (e.g. 40h)
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Trans-Tokenization: embedding initializations
1. Token alignment

2. Embedding mapping

3. Model adaptation: continue pretraining for a few GPU hours (e.g. 40h)
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Trans-tokenization
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Trans-Tokenization: embedding initializations
1. Token alignment

2. Embedding mapping

3. Model adaptation: continue pretraining for a few GPU hours (e.g. 40h)
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Tweety LLMs
A series of models with 

language-specific tokenizers
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tweety-7b-dutch
We trained a Dutch LLM based on 
Mistral-7B with a vocabulary of 50k 
tokens on 8,4B tokens.

tweety-7b-tatar
This is a state-of-the-art LLM for 
summarization and NLU. It also 
performs well for translation, 
outperforming Google Translate.

tweety-7b-italian
github.com/RiTA-nlp

Community model
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tweety-7b-dutch
We trained a Dutch LLM based on 
Mistral-7B with a vocabulary of 50k 
tokens on 8,4B tokens.

tweety-7b-tatar
This is a state-of-the-art LLM for 
summarization and NLU. It also 
performs well for translation, 
outperforming Google Translate.

tweety-7b-italian
github.com/RiTA-nlp

Community model

Results: LLMs for low+mid resource languages
Tatar: NLU← and summarization→

Hydra LLMs: Switching heads for 
zero-shot machine translation
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Slides available: pieter.ai/appearances.html
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