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Vlaamse (L)LMs
Vlaamse taalmodellen, groot en klein
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RobBERT

https://pieter.ai/robbert/
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Large training corpuses are used
with a large focus on English
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📘
One book 

40-50k tokens
One bookshelf 
1.6M - 2.5M tokens

One LLM training set 
2.5T - 6T tokens 

~2 500 000 bookshelves
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Tokenizing the training data
an example
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No, I am not a giraffe.
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No, I am not a giraffe.

[2822, 11, 358, 1097, 539, 264, 41389, 38880, 13]

Tokenizing the training data
an example
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314: _I

37370: _gir
21223: affe

No, I am not a giraffe.

[2822, 11, 358, 1097, 539, 264, 41389, 38880, 13]

Tokenizing the training data
an example
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Few non-English words are tokens
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Token types for words in English do not match, so the tokenizer falls back to non-
representative tokens types.
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Few non-English words are tokens
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e.g Dutch tokenizers: gpt-neo-1.3b-dutch

versus an English one: mistral-7b, geitje-7b

Token types for words in English do not match, so the tokenizer falls back to non-
representative tokens types.



Vlaamse (L)LMs — 

… and morpheme boundaries are not respected

11https://pieter.ai/bpe-knockout/

• Tokenization happens eagerly 

• Representations are dependent on tokens
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Trans-tokenization

12

Trans-Tokenization: embedding initializations
1. Token alignment

2. Embedding mapping

3. Model adaptation: continue pretraining for a few GPU hours (e.g. 40h)



Vlaamse (L)LMs — 

Trans-tokenization

13

Trans-Tokenization: embedding initializations
1. Token alignment

2. Embedding mapping

3. Model adaptation: continue pretraining for a few GPU hours (e.g. 40h)



Vlaamse (L)LMs — 

Trans-tokenization

14

Trans-Tokenization: embedding initializations
1. Token alignment

2. Embedding mapping

3. Model adaptation: continue pretraining for a few GPU hours (e.g. 40h)
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Tweety LLMs
A series of models with 

language-specific tokenizers
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tweety-7b-dutch
We trained a Dutch LLM based on 
Mistral-7B with a vocabulary of 50k 
tokens on 8,4B tokens.

tweety-7b-tatar
This is a state-of-the-art LLM for 
summarization and NLU. It also 
performs well for translation, 
outperforming Google Translate.

tweety-7b-italian
github.com/RiTA-nlp

Community model
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tweety-7b-dutch
We trained a Dutch LLM based on 
Mistral-7B with a vocabulary of 50k 
tokens on 8,4B tokens.

tweety-7b-tatar
This is a state-of-the-art LLM for 
summarization and NLU. It also 
performs well for translation, 
outperforming Google Translate.

Results: LLMs for low+mid resource languages
Tatar: NLU← and summarization→

Hydra LLMs: Switching heads for 
zero-shot machine translation

tweety-7b-italian
github.com/RiTA-nlp

Community model
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European Tweeties
Trans-tokenizing all EU languages
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tweety-7b-dutch
We trained a Dutch LLM based on 
Mistral-7B with a vocabulary of 50k 
tokens on 8,4B tokens.

tweety-7b-tatar
This is a state-of-the-art LLM for 
summarization and NLU. It also 
performs well for translation, 
outperforming Google Translate.

tweety-7b-italian
github.com/RiTA-nlp

Community model

https://pieter.ai/blog/2024/european-tweeties/
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Geitje-7b
First Dutch LLM

19



Vlaamse (L)LMs — 

Geitje-7b
First Dutch LLM that got taken down by Brein

• Trained on ‘gigacorpus’


• A torrent with gigabytes of Dutch books


• Gigacorpus got taken down by Brein already 

20https://tweakers.net/nieuws/231254/ontwikkelaar-haalt-taalmodel-geitje-offline-na-verzoek-stichting-brein.html
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ChocoLlama
More effort to curate high-quality data
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• OSCAR: 93 GB (28.6B tokens) - Common Crawl dump


• Open Subtitles: 5 GB (1.54B tokens)


• Wikipedia: 2.5 GB (769M tokens) 


• Job Descriptions: 1.5 GB (462M tokens) - TechWolf


• Staatsblad: 1.4 GB (431M tokens) - Bizzy


• Project Gutenberg: 0.3 GB (92M tokens) - 970 books


• Legislation: 0.2 GB (62M tokens) - ML6

Meeus, Rathé, Remy, Delobelle, Decorte, Demeester. "ChocoLlama: Lessons Learned From Teaching Llamas Dutch" (2023)
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ChocoLlama
More effort to curate high-quality data

23www.tijd.be/ondernemen/technologie/computerwetenschappers-bouwen-vlaams-ai-model-chocollama/10585956.html

Computerwetenschappers bouwen Vlaams AI-model ChocoLlama
06 februari 2025 16:48

• OSCAR: 93 GB (28.6B tokens) - Common Crawl dump


• Open Subtitles: 5 GB (1.54B tokens)


• Wikipedia: 2.5 GB (769M tokens) 


• Job Descriptions: 1.5 GB (462M tokens) - TechWolf


• Staatsblad: 1.4 GB (431M tokens) - Bizzy


• Project Gutenberg: 0.3 GB (92M tokens) - 970 books


• Legislation: 0.2 GB (62M tokens) - ML6



Stereotyping and bias
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Bloomberg investigation

Testing for name-based 
discrimination by submitting similar 
resumes with different names

25

ChatGPT as a recruiter

https://www.bloomberg.com/news/features/2024-10-18/do-ai-detectors-work-students-face-false-cheating-accusations



ieter.ai Fairness in large language models —

Bloomberg investigation

26https://www.bloomberg.com/news/features/2024-10-18/do-ai-detectors-work-students-face-false-cheating-accusations

“Those with names distinct to Black women were top-ranked for a software engineering 
role only 11% of the time by GPT — 36% less frequently than the best-performing group.”

Testing for name-based 
discrimination by submitting similar 
resumes with different names

ChatGPT as a recruiter
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Representational harms Allocational harms
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Automated decision-making
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https://verhalen.trouw.nl/toeslagenaffaire/

https://journals.sagepub.com/doi/full/10.1177/13882627211031257 

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Automated decision-making
Dutch SyRI legislation 

and COMPAS in the USA
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Biases are set in stone by automated decision-support systems

32

✨ Human-in-the-loop ✨ 
Polish public employment service

Automated decision-making
Dutch SyRI legislation 

and COMPAS in the USA
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33Jędrzej, et al. "Profiling the unemployed in Poland: social and political implications of algorithmic decision making." (2015).

✨ Human-in-the-loop ✨ 
Polish public employment service

Automated decision-making

“All changes represented only 0.58% of 
all cases of profiling”

Dutch SyRI legislation 
and COMPAS in the USA
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Recourse is difficult
Biases are set in stone by automated decision-support systems

34Jędrzej, et al. "Profiling the unemployed in Poland: social and political implications of algorithmic decision making." (2015).

“Moreover, the justification required to change a 
profile is then recorded in the computer system 

and might be accessed by other people: 
management of a given [counselor], but also 

possibly the Ministry of Labor and Social Policy”

“All changes represented only 0.58% of 
all cases of profiling”

✨ Human-in-the-loop ✨ 
Polish public employment service

Automated decision-making
Dutch SyRI legislation 

and COMPAS in the USA



Model errors persist  
and reinforce social biases



Model errors persist  
and reinforce social biases

So how problematic are LLMs?
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Knowledge from resumes
Nationality varies between job titles

but “Cleaning ladies aren’t Belgians”?

37

Kamermeisje Software-ingenieur

Congo

Bulgarije

Afghanistan

Syrië

Irak

Japan

Belgisch

Belgische

België

Belg

Non-calibrated posterior probability
0 0,2 0,4

Most probable nationalities

Delobelle et al. ‘ResumeTailor’ (2023)

“Software engineers are Belgian”
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Repeating stereotypes
Multilingual issue for many LLMs

• LLMs happily go along with given stereotypes


• … often even exaggerating the stereotype

38Mitchell, Attanasio, Baldini, Clinciu, Clive, Delobelle et al. 

‘SHADES: Towards a Multilingual Assessment of Stereotypes in Large Language Models’ (2025)
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Measuring bias
in language models

39
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Most templates don’t correlate
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Delobelle and Tokpo et al. (2022)
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… and most metrics don’t correlate
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Actionability of metrics

The actual metric does not matter much 
SEAT, CEAT, LPBS, DisCo, …


But it needs to test what you care about 
e.g. gender bias in professions


Make it explicit what you test


… and test if the metric is reliable 
e.g. if different runs yield different results

42

So what is a ‘good’ metric?
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Slides available: pieter.ai/appearances.html
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