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LLM engineer at Aleph Alpha, prev. KU Leuven & Apple 
Postdoc and PhD @ KU Leuven’s DTAI research group  

Working on fairness issues in language models  

e.g. trying to remove gender biases 

First author of our RobBERT model

state-of-the-art Dutch BERT language model 

Expert advisor for the EU’s AI Act Code of Practice

and member of the KU Leuven GenAI board 
and technical advisor in a strategic litigation case against companion AIs 
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Language modeling
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RobBERT

https://pieter.ai/robbert/
3M+ downloads
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An inference pass
through GPT
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KV cache

• LLM inference is split into 2 steps


• Prefill


• Generation


• LLMs are “causal”, conditioned on the previous tokens
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Inference is mostly memory bound
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Geitje-7b
First Dutch LLM
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Geitje-7b
First Dutch LLM that got taken down by Brein

• Mistral-7b finetune on ‘gigacorpus’


• A torrent with gigabytes of Dutch books


• Gigacorpus got taken down by Brein already 

12https://tweakers.net/nieuws/231254/ontwikkelaar-haalt-taalmodel-geitje-offline-na-verzoek-stichting-brein.html
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ChocoLlama
More effort to curate high-quality data
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• OSCAR: 93 GB (28.6B tokens) - Common Crawl dump


• Open Subtitles: 5 GB (1.54B tokens)


• Wikipedia: 2.5 GB (769M tokens) 


• Job Descriptions: 1.5 GB (462M tokens) - TechWolf


• Staatsblad: 1.4 GB (431M tokens) - Bizzy


• Project Gutenberg: 0.3 GB (92M tokens) - 970 books


• Legislation: 0.2 GB (62M tokens) - ML6

Meeus, Rathé, Remy, Delobelle, Decorte, Demeester. "ChocoLlama: Lessons Learned From Teaching Llamas Dutch" (2023)
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ChocoLlama
More effort to curate high-quality data

15www.tijd.be/ondernemen/technologie/computerwetenschappers-bouwen-vlaams-ai-model-chocollama/10585956.html

Computerwetenschappers bouwen Vlaams AI-model ChocoLlama
06 februari 2025 16:48
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Tweety LLMs
A series of models with 

language-specific tokenizers
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Tokenizing the training data
an example
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No, I am not a giraffe.
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No, I am not a giraffe.

Tokenizing the training data
an example

[2822, 11, 358, 1097, 539, 264, 37370, 21223, 13]
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314: _I

37370: _gir
21223: affe

No, I am not a giraffe.

[2822, 11, 358, 1097, 539, 264, 37370, 21223, 13]

Tokenizing the training data
an example
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Few non-English words are tokens

21

Token types for words in English do not match, so the tokenizer falls back to non-
representative tokens types.
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Few non-English words are tokens

22

e.g Dutch tokenizers: gpt-neo-1.3b-dutch

versus an English one: mistral-7b, geitje-7b

Token types for words in English do not match, so the tokenizer falls back to non-
representative tokens types.
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… and morpheme boundaries are not respected

23https://pieter.ai/bpe-knockout/

• Tokenization happens eagerly 

• Representations are dependent on tokens


• Problematic for agglutinative or fusional langs.

314: _I

37370: _gir
21223: affe_horses

            hoe
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Trans-tokenization

24

Trans-Tokenization: embedding initializations
1. Token alignment

2. Embedding mapping

3. Model adaptation: continue pretraining for a few GPU hours (e.g. 40h)
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Trans-Tokenization: embedding initializations
1. Token alignment

2. Embedding mapping

3. Model adaptation: continue pretraining for a few GPU hours (e.g. 40h)
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tweety-7b-dutch
We trained a Dutch LLM based on 
Mistral-7B with a vocabulary of 50k 
tokens on 8,4B tokens.

tweety-7b-tatar
This is a state-of-the-art LLM for 
summarization and NLU. It also 
performs well for translation, 
outperforming Google Translate.

tweety-7b-italian
github.com/RiTA-nlp

Community model
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tweety-7b-dutch
We trained a Dutch LLM based on 
Mistral-7B with a vocabulary of 50k 
tokens on 8,4B tokens.

tweety-7b-tatar
This is a state-of-the-art LLM for 
summarization and NLU. It also 
performs well for translation, 
outperforming Google Translate.

Results: LLMs for low+mid resource languages
Tatar: NLU← and summarization→

Hydra LLMs: Switching heads for 
zero-shot machine translation

tweety-7b-italian
github.com/RiTA-nlp

Community model
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European Tweeties
Trans-tokenizing all EU languages
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tweety-7b-dutch
We trained a Dutch LLM based on 
Mistral-7B with a vocabulary of 50k 
tokens on 8,4B tokens.

tweety-7b-tatar
This is a state-of-the-art LLM for 
summarization and NLU. It also 
performs well for translation, 
outperforming Google Translate.

tweety-7b-italian
github.com/RiTA-nlp

Community model

https://pieter.ai/blog/2024/european-tweeties/
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All our models are publicly available
Model weights on Hugging Face

30



Stereotyping and bias
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Harms of stereotyping

32

Representational harms Allocational harms
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Biased representations
Reflecting or reinforcing social biases and stereotypes

33



Automation sets biases in stone
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Bloomberg investigation

“AI-written” essays were often written by 
more vulnerable groups

• Non-native English speakers

• People with autism or similar disorders


35

Detecting AI-written essays

https://www.bloomberg.com/news/features/2024-10-18/do-ai-detectors-work-students-face-false-cheating-accusations
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Bloomberg investigation

“AI-written” essays were often written by 
more vulnerable groups:

• Non-native English speakers

• People with autism or similar disorders


Recourse is difficult: real essay writers 
were not believed and met with suspicion

36

Detecting AI-written essays

https://www.bloomberg.com/news/features/2024-10-18/do-ai-detectors-work-students-face-false-cheating-accusations



ieter.ai Fairness in large language models —

Bloomberg investigation

Testing for name-based 
discrimination by submitting similar 
resumes with different names

37

ChatGPT as a recruiter

https://www.bloomberg.com/news/features/2024-10-18/do-ai-detectors-work-students-face-false-cheating-accusations
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Bloomberg investigation

38https://www.bloomberg.com/news/features/2024-10-18/do-ai-detectors-work-students-face-false-cheating-accusations

“Those with names distinct to Black women were top-ranked for a software engineering 
role only 11% of the time by GPT — 36% less frequently than the best-performing group.”

Testing for name-based 
discrimination by submitting similar 
resumes with different names

ChatGPT as a recruiter
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Recourse is difficult
Biases are set in stone by automated decision-support systems

41



LLMs guest lecture — 

Recourse is difficult
Biases are set in stone by automated decision-support systems

42

Automated decision-making
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Recourse is difficult
Biases are set in stone by automated decision-support systems
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https://verhalen.trouw.nl/toeslagenaffaire/

https://journals.sagepub.com/doi/full/10.1177/13882627211031257 

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Automated decision-making
Dutch SyRI legislation 

and COMPAS in the USA
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Recourse is difficult
Biases are set in stone by automated decision-support systems
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✨ Human-in-the-loop ✨ 
Polish public employment service

Automated decision-making
Dutch SyRI legislation 

and COMPAS in the USA
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Recourse is difficult
Biases are set in stone by automated decision-support systems

45Jędrzej, et al. "Profiling the unemployed in Poland: social and political implications of algorithmic decision making." (2015).

✨ Human-in-the-loop ✨ 
Polish public employment service

Automated decision-making

“All changes represented only 0.58% of 
all cases of profiling”

Dutch SyRI legislation 
and COMPAS in the USA
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Recourse is difficult
Biases are set in stone by automated decision-support systems

46Jędrzej, et al. "Profiling the unemployed in Poland: social and political implications of algorithmic decision making." (2015).

“Moreover, the justification required to change a 
profile is then recorded in the computer system 

and might be accessed by other people: 
management of a given [counselor], but also 

possibly the Ministry of Labor and Social Policy”

“All changes represented only 0.58% of 
all cases of profiling”

✨ Human-in-the-loop ✨ 
Polish public employment service

Automated decision-making
Dutch SyRI legislation 

and COMPAS in the USA



Model errors persist  
and reinforce social biases



Model errors persist  
and reinforce social biases

So how problematic are LLMs?
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Repeating stereotypes
Multilingual issue for many LLMs

• LLMs happily go along with given stereotypes


• … often even exaggerating the stereotype

49Mitchell, Attanasio, Baldini, Clinciu, Clive, Delobelle et al. 

‘SHADES: Towards a Multilingual Assessment of Stereotypes in Large Language Models’ (2025)
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Knowledge from resumes
Nationality varies between job titles

but “Cleaning ladies aren’t Belgians”?

50

Kamermeisje Software-ingenieur

Congo

Bulgarije

Afghanistan

Syrië

Irak

Japan

Belgisch

Belgische

België

Belg

Non-calibrated posterior probability
0 0,2 0,4

Most probable nationalities

Delobelle et al. ‘ResumeTailor’ (2023)

“Software engineers are Belgian”
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Measuring bias
in language models

51
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Most templates don’t correlate
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Delobelle and Tokpo et al. (2022)
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Most metrics don’t correlate
Different bias metrics indicate different levels of ‘bias’
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Delobelle and Tokpo et al. (2022)
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Actionability of metrics

The actual metric does not matter much 
SEAT, CEAT, LPBS, DisCo, …


But it needs to test what you care about 
e.g. gender bias in professions


Make it explicit what you test


… and test if the metric is reliable 
e.g. if different runs yield different results

54

So what is a ‘good’ metric?



Safety and alignment
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Safety and alignment
Bias is not the only issue

56



ieter.ai Fairness in large language models — 57https://www.bbc.com/travel/article/20240222-air-canada-chatbot-misinformation-what-travellers-should-know

Safety and alignment
Bias is not the only issue



ieter.ai Fairness in large language models — 58https://www.nytimes.com/2024/10/23/technology/characterai-lawsuit-teen-suicide.html
https://blog.character.ai/community-safety-updates/

Safety and alignment
Bias is not the only issue
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✨ Retrieval augmented generation ✨
Improving factuality with semantic search

59https://pieter.ai/blog/2023/dutch-chat-toolkit/
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… but not a silver bullet
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… but not a silver bullet

62https://storage.courtlistener.com/recap/gov.uscourts.nysd.575368/gov.uscourts.nysd.575368.32.1_1.pdf
Magesh et al. (2024). Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools

→ Hallucinations are inherent to LLMs
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Suppressing experts for toxicity

63

AurA
Work done while at Apple

Suau and Delobelle et al. ‘Whispering Experts’ (2024)
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AurA
Work done while at Apple

Suau and Delobelle et al. ‘Whispering Experts’ (2024)
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Suppressing experts for toxicity

→ Effectively mitigates toxicity


→ But no 100% guarantees

66

AurA
Work done while at Apple

Suau and Delobelle et al. ‘Whispering Experts’ (2024)
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Slides available: pieter.ai/appearances.html
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