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Fairness in large language models —

Bloomberg investigation

Testing for name-based 
discrimination by submitting similar 
resumes with different names

2

ChatGPT as a recruiter

https://www.bloomberg.com/news/features/2024-10-18/do-ai-detectors-work-students-face-false-cheating-accusations
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Bloomberg investigation

3https://www.bloomberg.com/news/features/2024-10-18/do-ai-detectors-work-students-face-false-cheating-accusations

“Those with names distinct to Black women were top-ranked for a software engineering 
role only 11% of the time by GPT — 36% less frequently than the best-performing group.”

Testing for name-based 
discrimination by submitting similar 
resumes with different names

ChatGPT as a recruiter
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2025-…       Postdoctoral researcher at KU Leuven 
2024-2025 LLM engineer at Aleph Alpha,  
2023           Apple 
Postdoc and PhD @ KU Leuven’s DTAI research group  

Working on fairness issues in language models  

e.g. trying to remove gender biases 

First author of our RobBERT model

state-of-the-art Dutch BERT language model 

Expert advisor for the EU’s AI Act Code of Practice

and member of the KU Leuven GenAI board 
and technical advisor in a strategic litigation case against companion AIs 
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Dr. Ing. Pieter Delobelle

EU AI Office’s Network of Evaluators Workshop, April 2025



Situating fairness



Fairness in large language models —

Harms of stereotyping
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Representational harms Allocational harms
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Biased representations
Reflecting or reinforcing social biases and stereotypes
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Fairness in large language models —

Bloomberg investigation

“AI-written” essays were often written by 
more vulnerable groups

• Non-native English speakers

• People with autism or similar disorders
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Detecting AI-written essays

https://www.bloomberg.com/news/features/2024-10-18/do-ai-detectors-work-students-face-false-cheating-accusations



Fairness in large language models —

Bloomberg investigation

“AI-written” essays were often written by 
more vulnerable groups:

• Non-native English speakers

• People with autism or similar disorders


Recourse is difficult: real essay writers 
were not believed and met with suspicion

11

Detecting AI-written essays

https://www.bloomberg.com/news/features/2024-10-18/do-ai-detectors-work-students-face-false-cheating-accusations
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Automated decision-making
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Recourse is difficult
Biases are set in stone by automated decision-support systems
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https://verhalen.trouw.nl/toeslagenaffaire/

https://journals.sagepub.com/doi/full/10.1177/13882627211031257 

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Automated decision-making
Dutch SyRI legislation 

and COMPAS in the USA
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Recourse is difficult
Biases are set in stone by automated decision support systems
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✨ Human-in-the-loop ✨ 
Polish public employment service

Automated decision-making
Dutch SyRI legislation 

and COMPAS in the USA
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Recourse is difficult
Biases are set in stone by automated decision-support systems

16Jędrzej, et al. "Profiling the unemployed in Poland: social and political implications of algorithmic decision making." (2015).

✨ Human-in-the-loop ✨ 
Polish public employment service

Automated decision-making

“All changes represented only 0.58% of 
all cases of profiling”

Dutch SyRI legislation 
and COMPAS in the USA
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Recourse is difficult
Biases are set in stone by automated decision-support systems

17Jędrzej, et al. "Profiling the unemployed in Poland: social and political implications of algorithmic decision making." (2015).

“Moreover, the justification required to change a 
profile is then recorded in the computer system 

and might be accessed by other people: 
management of a given [counselor], but also 

possibly the Ministry of Labor and Social Policy”

“All changes represented only 0.58% of 
all cases of profiling”

✨ Human-in-the-loop ✨ 
Polish public employment service

Automated decision-making
Dutch SyRI legislation 

and COMPAS in the USA



Model errors persist  
and reinforce social biases



Fairness in large language models — 19

Representational harms Allocational harms
Part 1Part 2



Allocational harms
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Classifying Tweets about COVID in Belgium
Different languages have different performances

21https://huggingface.co/DTAI-KULeuven/mbert-corona-tweets-belgium-topics
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There is always a tradeoff between false and true positives
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A binary classifier is never perfect
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There is always a tradeoff between false and true positives
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A binary classifier is never perfect

False positive rate
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Social group A (often the minority)
Social group B

Separation: error rate parity

✨ randomization ✨
adding randomness increases fairness but adds ‘token’ individuals   
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Modeling Bias Mechanisms Directly
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ProbLog4Fairness

"ProbLog4Fairness: A Neurosymbolic Approach to Modeling and Mitigating Bias", 
 Adriaensen, Van Praet, Bekker, Manhaeve, Delobelle, Buyl (2025, under submission)
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Modeling Bias Mechanisms Directly
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ProbLog4Fairness

"ProbLog4Fairness: A Neurosymbolic Approach to Modeling and Mitigating Bias", 
 Adriaensen, Van Praet, Bekker, Manhaeve, Delobelle, Buyl (2025, under submission)

Example: loan application with label bias 
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So what can we do?

1. Consider the task we try to solve


→Does it make sense?


→Evaluate per sub-group


2. Evaluate extensively: https://fairlearn.org/

28



Representational harms



Model errors persist  
and reinforce social biases



Model errors persist  
and reinforce social biases

So how problematic are LLMs?



Fairness in large language models —

Knowledge from the internet 🗑

- Gender does get encoded in the representations


- But not perfectly and with a lot of noise


e.g. "actrice" (actress) and "huisvrouw" (house wife)

32Delobelle et al. ‘RobBERT’ (2020)



Fairness in large language models —

Knowledge from resumes
Nationality varies between job titles

but “Cleaning ladies aren’t Belgians”?

33

Kamermeisje Software-ingenieur

Congo

Bulgarije

Afghanistan

Syrië

Irak

Japan

Belgisch

Belgische

België

Belg

Non-calibrated posterior probability
0 0,2 0,4

Most probable nationalities

Delobelle et al. ‘ResumeTailor’ (2023)

“Software engineers are Belgian”
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Repeating stereotypes
Multilingual issue for many LLMs

• LLMs happily go along with given stereotypes


• … often even exaggerating the stereotype

34Mitchell, Attanasio, Baldini, Clinciu, Clive, Delobelle et al. 

‘SHADES: Towards a Multilingual Assessment of Stereotypes in Large Language Models’ (2025)
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Language modeling

1. Autoregressive language modeling 

35

2. Masked language modeling
is aHe

Masked LM

doctor

<m> aHe doctor

is aHe

Causal LM

doctor

is aHe

is aHe

Causal LM

isHe
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Language modeling

1. Autoregressive language modeling 
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2. Masked language modeling
is aHe

Masked LM

doctor

<m> aHe doctor

is aHe

Causal LM

doctor

is aHe

is aHe

Causal LM

isHe

RobBERT

https://pieter.ai/robbert/
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Pretraining and downstream tasks
Does reducing bias lead to fairer downstream tasks?

37Tokpo and Delobelle et al. (2023)
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Does reducing bias lead to fairer downstream tasks?

Tokpo and Delobelle et al. (2023)
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Most templates don’t correlate
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Delobelle and Tokpo et al. (2022)
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… and most metrics don’t correlate
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Actionability of metrics

The actual metric does not matter much 
SEAT, CEAT, LPBS, DisCo, …


But it needs to test what you care about 
e.g. gender bias in professions


Make it explicit what you test


… and test if the metric is reliable 
e.g. if different runs yield different results

41

So what is a ‘good’ metric?



Inference-time control



Fairness in large language models —

Safety and alignment
Bias is not the only issue

43



Fairness in large language models — 44https://www.bbc.com/travel/article/20240222-air-canada-chatbot-misinformation-what-travellers-should-know

Safety and alignment
Bias is not the only issue



Fairness in large language models — 45https://www.nytimes.com/2024/10/23/technology/characterai-lawsuit-teen-suicide.html
https://blog.character.ai/community-safety-updates/

Safety and alignment
Bias is not the only issue
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Inference-time control on different levels
Steering "toxicity" is different from enforcing lexical constraints

46



Fairness in large language models —

Inference-time control on different levels
Steering "toxicity" is different from enforcing lexical constraints
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e.g. CtrlG (Zhang et al., 2024)

e.g.  
 DExperts (Liu et al., 2021)
AurA (Delobelle et al., 2024)

e.g. Experts neurons  
       (Suau et al., 2024)
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Suppressing experts for toxicity

48

AurA
Work done while at Apple

Delobelle* and Suau* et al. ‘Whispering Experts’ (2024)



Fairness in large language models —

Suppressing experts for toxicity

49

AurA
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Delobelle* and Suau* et al. ‘Whispering Experts’ (2024)
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Suppressing experts for toxicity
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AurA
Work done while at Apple

Delobelle* and Suau* et al. ‘Whispering Experts’ (2024)
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Inference-time control on different levels
Next steps?
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??}
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Inference-time control on different levels
Next steps?

52

??} SAEs?
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Slides available: pieter.ai/appearances.html
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