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How does this work? 
ChatGPT in the news 



How does this work? 



How does this work? 
How can I use this for my research? 
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Generating text with LMs
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isHe

Causal LM

isHe

📘Training data 
What a model learns

Tokenizer 
How a model understands text

Attention mechanism 
Each word affects the other words

‘Heads’ of a language model 
How a model predicts the next word

Parts of a language models
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Training data
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wikipedia (copyright free) books scraped data
Oscar corpus
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Tokenizing the training data 
an example
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No, I am not a giraffe.
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No, I am not a giraffe.

Tokenizing the training data 
an example
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No, I am not a giraffe.

[2822, 11, 358, 1097, 539, 264, 41389, 38880, 13]

Tokenizing the training data 
an example
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314: _I

37370: _gir
21223: affe

No, I am not a giraffe.

[2822, 11, 358, 1097, 539, 264, 41389, 38880, 13]

Tokenizing the training data 
an example
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Embeddings capture meaning
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Giraffe
0.9 0.10.10.50.4 0.10.0
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Embeddings capture meaning 
Word embeddings
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LLMs use context to 
learn embeddings 
to address polysemy
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LLMs use context to 
learn embeddings 
to address polysemy
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to address polysemy
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LLMs use context to 
learn embeddings 
to address polysemy
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Attention layers

robs aHe
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LLMs use context to 
learn embeddings 
to address polysemy
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Attention layers
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LLMs use context to 
learn embeddings 
to address polysemy
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Next token pred.

Attention layers

robs aHe

Bank

bank

Bank Bank

🏦 🛋
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is aHeHe

It is the tallest living terrestrial animal.

giraffe.

Giraffes live in herds.

IUCN recognises one species of giraffe.

giraffe
doctordoctor

runrun
aa

defends
giraffe
doctordoctor

runrun
aa

defends

Predicting the next token
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Large training corpuses are used
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📘
One book 

40-50k tokens
One bookshelf 
1.6M - 2.5M tokens

One LLM training set 
2.5T - 6T tokens 

~2 500 000 bookshelves
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Pretraining is expensive, but worth it

25https://openai.com/research/scaling-laws-for-neural-language-models 
https://allenai.org/olmo

https://openai.com/research/scaling-laws-for-neural-language-models
https://allenai.org/olmo
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Language modeling
1. Causal language modeling (CLM)
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2. Masked language modeling (MLM) 
is aHe

Masked LM

doctor

<m> aHe doctor

is aHe

Causal LM

doctor

is aHe

is aHe

Causal LM

isHe
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Language modeling
1. Causal language modeling (CLM)
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2. Masked language modeling (MLM) 
is aHe

Masked LM

doctor

<m> aHe doctor

is aHe

Causal LM

doctor

is aHe

is aHe

Causal LM

isHe

RobBERT

https://pieter.ai/robbert/
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What is the problem?



Measuring bias in non-contextual word embeddings
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Measuring bias in non-contextual word embeddings
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Measuring bias in non-contextual word embeddings
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Measuring bias in MLMs
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1. Pretraining step 
e.g. OSCAR, Wikipedia, ... 

He is a doctor



Measuring bias in MLMs
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1. Pretraining step 
e.g. OSCAR, Wikipedia, ... 

He is a doctor

Intrinsic biases



Measuring bias in MLMs

35

1. Pretraining step 
e.g. OSCAR, Wikipedia, ... 

He is a doctor

[CLS]

2. Finetuning step
e.g. sentiment analysis,

named entity recognition 

He is a doctor

Transfer 
learning

Intrinsic biases
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Measuring bias in MLMs
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1. Pretraining step 
e.g. OSCAR, Wikipedia, ... 

He is a doctor

[CLS]

2. Finetuning step
e.g. sentiment analysis,

named entity recognition 

He is a doctor

Transfer 
learning

Intrinsic biases
Extrinsic biases

https://fairlearn.org/



Intrinsic bias in MLMs
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Intrinsic biases in language models

39
Delobelle et al. (NAACL 2022)

Background on biases                Measuring fairness in LMs                   Mitigating stereotypes in LMs                       Conclusion    
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Measuring bias in word embeddings

41

Word embeddings association tests 
Caliskan et al. (2017)

Bias subspaces (based on PCA) 
Bolukbasi et al. (2016)

Background on biases                Measuring fairness in LMs                   Mitigating stereotypes in LMs                       Conclusion    



DTAI

Word Embeddings Association Test (WEAT)

Caliskan et al. (2017)

• Measure mean cosine distance between attributes A,B and 
targets X,Y 

• Targets: e.g. man, woman 

• Attributes: e.g. doctor, nurse

42

Background on biases                Measuring fairness in LMs                   Mitigating stereotypes in LMs                       Conclusion    



DTAI

Word Embeddings Association Test (WEAT)

Caliskan et al. (2017)

• Measure mean cosine distance between attributes A,B and 
targets X,Y 

• Targets: e.g. man, woman 

• Attributes: e.g. doctor, nurse 
• Based on the implicit association test

43

Background on biases                Measuring fairness in LMs                   Mitigating stereotypes in LMs                       Conclusion    



How about language models?
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Many choices that result in different metrics
Step 1 Choose your base fairness metric 

PCA 
Bolukbasi et al. (2016)

WEAT 
Caliskan et al. (2017)

Background on biases                Measuring fairness in LMs                   Mitigating stereotypes in LMs                       Conclusion    



DTAI 46

Step 1 Choose your base fairness metric 

PCA 
Bolukbasi et al. (2016)

WEAT 
Caliskan et al. (2017)

Step 2 Select all the templates you want 
“X is a Y” 
“X can do Y” 
“[CLS] X [SEP]” 
“X is happy in the Y” 
“X likes Y”

“X likes to Y” 
“X took a course on Y” 
“X studied Y” 
“This is X” 
“That is X”

❶

❶

❶

Many choices that result in different metrics
Background on biases                Measuring fairness in LMs                   Mitigating stereotypes in LMs                       Conclusion    
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Step 1 Choose your base fairness metric 

PCA 
Bolukbasi et al. (2016)

WEAT 
Caliskan et al. (2017)

Step 2 Select all the templates you want 
“X is a Y” 
“X can do Y” 
“[CLS] X [SEP]” 
“X is happy in the Y” 
“X likes Y”

“X likes to Y” 
“X took a course on Y” 
“X studied Y” 
“This is X” 
“That is X”

❶

❶

❶

Step 3 Choose seed words

Professions Male-female Nice-not nice …

Many choices that result in different metrics
Background on biases                Measuring fairness in LMs                   Mitigating stereotypes in LMs                       Conclusion    
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Step 1 Choose your base fairness metric 

PCA 
Bolukbasi et al. (2016)

WEAT 
Caliskan et al. (2017)

Step 2 Select all the templates you want 
“X is a Y” 
“X can do Y” 
“[CLS] X [SEP]” 
“X is happy in the Y” 
“X likes Y”

“X likes to Y” 
“X took a course on Y” 
“X studied Y” 
“This is X” 
“That is X”

❶

❶

❶

Step 4 Choose an embedding (opt.)Step 3 Choose seed words

Professions Male-female Nice-not nice …

Sentence embedding 
Token embedding 

Mean pooled tokens 
First 4 embeddings 

…

Many choices that result in different metrics
Background on biases                Measuring fairness in LMs                   Mitigating stereotypes in LMs                       Conclusion    
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The result: different, incomparable metrics

49Delobelle et al. (2022)

Background on biases                Measuring fairness in LMs                   Mitigating stereotypes in LMs                       Conclusion    
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An example method: LPBS

50
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Most templates don’t correlate
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1.00 0.55 0.28 0.67 0.42 0.49 −0.33 0.51 −0.12 0.18 0.37

1.00 0.22 0.78 0.60 0.54 −0.11 0.44 0.46 0.14 0.42

1.00 0.13 −0.17 −0.07 −0.25 0.39 −0.02 0.29 0.16

1.00 0.67 0.59 −0.18 0.66 0.43 0.04 0.53

1.00 0.78 0.04 0.38 0.27 0.34 0.34

1.00 −0.19 0.55 0.05 0.16 0.23

1.00 −0.48 0.50 −0.45 −0.57
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Correlations between templates

Delobelle et al. (2022)

Background on biases                Measuring fairness in LMs                   Mitigating stereotypes in LMs                       Conclusion    
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Most embedding methods don’t correlate
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Correlations between embedding methods

Delobelle et al. (2022)

Background on biases                Measuring fairness in LMs                   Mitigating stereotypes in LMs                       Conclusion    
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… and most metrics don’t correlate
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1.00

0.76 1.00

0.81 0.89 1.00

−0.38 −0.14 −0.49 1.00

0.50 0.94 0.78 0.03 1.00
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0.10 0.53 0.23 0.72 0.68 −0.05 1.00
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1.0
SEAT

Lauscher et al. (2021)

Tan et al. (2019)

LPBS

CrowS-Pairs
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WinoBias (T1)

Skew

SEAT

Lauscher et al. (2
021)

Tan et al. (2
019)

LPBS

CrowS-Pairs
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Skew

Correlations between intrinsic and extrinsic measures

Delobelle et al. (2022)

Background on biases                Measuring fairness in LMs                   Mitigating stereotypes in LMs                       Conclusion    



Intrinsic bias in generative LLMs



DTAI

HONEST
• Measuring stereotypical completion 

ratio based on predefined words. 
• HONEST score is the difference 

btween male and female ratio.

55
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RealToxicityPrompts: measuring toxicity
• Prompts can be toxic or non-toxic 
• Non-toxic prompts can still have 

toxic continuations

56



Mitigating intrinsic bias
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Existing mitigations require costly retraining

58



DTAI FairDistillation | 

Knowledge distillation
• compression of ensemble of models 
• Teacher model(s) and student model 

59

(Buciluǎ et al., 2006, Hinton et al., 2015)



DTAI FairDistillation | 

Knowledge distillation
• compression of ensemble of models 
• Teacher model(s) and student model 

60

(Buciluǎ et al., 2006, Hinton et al., 2015)

input x
<mask> is a doctor

isHe

…

Distillation loss
  + opt. MLM loss

Student modelTeacher model
e.g. BERT-base

…

doctor isHe doctor

<mask> is a doctor

isHe

…

Masked LM

doctor

 MLM loss
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Knowledge distillation
• compression of ensemble of models 
• Teacher model(s) and student model 
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(Buciluǎ et al., 2006, Hinton et al., 2015)

input x
<mask> is a doctor

isHe

…

Distillation loss
  + opt. MLM loss

Student modelTeacher model
e.g. BERT-base

…

doctor isHe doctor

<mask> is a doctor

isHe

…

Masked LM

doctor

 MLM loss

input x
<mask> is a doctor

isHe

…

Distillation loss
  + opt. MLM loss

Student modelTeacher model
e.g. BERT-base

…

doctor isHe doctor

<mask> is a doctor

isHe

…

Masked LM

doctor

 MLM loss
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Pretraining and finetuning
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Pretraining and finetuning

63



Finetuning

Fairness and bias in NLP
VAIA lecture 

June 13, 2024
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Use of pre-trained LM

65

●Two most common strategies for applying a pre-trained LM to downstream 
NLP tasks: 
●Fine-tuning 
●Feature-based
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Fine-tuning
●The two pretraining objectives of BERT allow it to be used on any single sequence 

and  sequence pair tasks without substantial task-specific architecture modifications 

●For a task: 
●Plug in the task-specific inputs and outputs 
●A simple output layer and its corresponding loss is added to the pre-trained model 
●Fine-tune all the parameters end-to-end for a few epochs

e.g., NER task

66



Use of pre-trained LM

67
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Feature-based
●Pretrained LM features (e.g., word representations) are extracted from the pre-

trained  model and used as input features for learning a downstream task: 
●Allows a task-specific architecture 
●Computationally more efficient reuse of the representations

Results on NER using 
BERT embeddings  
obtained at different 

layers 
[Jay Alammar 2019]
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Generative LLMs
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GPT-3: language generation

70
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GPT-3: language generation
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DTAI

GPT-3: language generation

72
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Transformer-based language models are unsupervised  
multitask learners

zero-shot sentiment classification

73
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zero-shot text classification

Transformer-based language models are unsupervised  
multitask learners

74
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zero-shot text summarization

Transformer-based language models are unsupervised  
multitask learners
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zero-shot question answering

Transformer-based language models are unsupervised  
multitask learners

76
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zero-shot machine translation
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Transformer-based language models are unsupervised  
multitask learners
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zero-shot dialogue system
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Transformer-based language models are unsupervised  
multitask learners
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Instruction tuning

79

Base model
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Instruction tuning

80

<s>[INST] Label the following sentence as positive 
or negative... [/INST]" 
"Well, Positive. The sentence expresses a liking 
for …</s> " 
"[INST] And this sentence: “…” [/INST]

Base model Instruction-tuned model 
with chat-templates
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Instruction tuning: RLHF

81
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Adapting RL: constitutional AI

82https://arxiv.org/pdf/2212.08073



Practical session: COVID-19 tweets
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Context
• Evaluation of 1.3M collected Tweets on COVID-19 measures 
• Focused on discussion of COVID-19 policy in Belgium 
• Additional focus on support for curfews 

• Belgium had multiple curfews (starting at midnight)

84
Kristen Scott, Pieter Delobelle, Bettina Berendt, 2021. "Measuring Shifts in Attitudes Towards COVID-19 Measures in Belgium".  

Computational Linguistics in the Netherlands Journal
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Labeling: Doccano

85
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Our pipeline

86



DTAI 87https://huggingface.co/DTAI-KULeuven/mbert-corona-tweets-belgium-topics
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Practical session
• Get the following colab notebook: 

• https://colab.research.google.com/drive/1LLCtP0lO3mar-
nawdT9vPm7vY8lWnZrZ?usp=sharing 

• Download the following file: 
• https://pieter.ai/resources/covid.csv 

• Start a colab instance and follow the notebook 
• You might want to select a GPU instance

pieter.ai/appearances.html 

https://colab.research.google.com/drive/1LLCtP0lO3mar-nawdT9vPm7vY8lWnZrZ?usp=sharing
https://colab.research.google.com/drive/1LLCtP0lO3mar-nawdT9vPm7vY8lWnZrZ?usp=sharing
https://pieter.ai/resources/covid.csv


Final thoughts: legal requirements, genAI policy at KU Leuven

Fairness and bias in NLP
VAIA lecture 

June 13, 2024
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Different access modes

92

Closed source 
No access to training  

data or model weights

Open model weights 
No access to 
training data

Open 
Access to training  

data and model weights

MistralGPT
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Different access modes
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Closed source 
No access to training  

data or model weights

Open model weights 
No access to 
training data

Open 
Access to training  

data and model weights

MistralGPT

pieter.ai/tweety-7b-dutch

Geitje-7b Tweety-7b-dutch
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Different access modes
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Closed source 
No access to training  

data or model weights

Open model weights 
No access to 
training data

Open 
Access to training  

data and model weights

MistralGPT
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Different access modes
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Closed source 
No access to training  

data or model weights

Open model weights 
No access to 
training data

Open 
Access to training  

data and model weights

MistralGPT

All data will be sent to OpenAI 
This can be in a private cloud (Azure), 

but always check if you have 
permission to do this with sensitive 

data, like from participants.
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Different access modes
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Closed source 
No access to training  

data or model weights

Open model weights 
No access to 
training data

Open 
Access to training  

data and model weights

MistralGPT

All data will be sent to OpenAI 
This can be in a private cloud (Azure), 

but always check if you have 
permission to do this with sensitive 

data, like from participants.

Some are provided via an api, other models you can only run yourself
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European AI Act

97

Prohibited

Conformity 
Assessment

Transparency 
obligation

Social scoring, mass surveillance, 
emotion recognition at work and in 
education 
Access to employment, education, 
public services, safety in vehicles, 
medical devices, critical 
infrastructure managment
Chatbots 

Key requirements high-risk systems: fundamental rights impact assessment, registration 
in public EU database, risk & quality mgmt. system, data governance, transparency, 
human oversight, accuracy, robustness and cybersecurity



DTAI 98https://research.kuleuven.be/en/integrity-ethics/integrity/practices/genai/use-genai-research


